
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-209708
ICASE Report No. 99-40

Wavefront Cache-friendly Algorithm for Compact
Numerical Schemes

Alex Povitsky
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

October 1999

Prepared for Langley Research Center
under Contract NAS1-97046



WAVEFRONT CACHE-FRIENDLY ALGORITHM FOR COMPACT NUMERICAL

SCHEMES

ALEX POVITSKY�

Abstract. Compact numerical schemes provide high-order solution of PDEs with low dissipation and

dispersion. Computer implementation of these schemes requires numerous passes of data through cache

memory that considerably reduces performance of these schemes. To reduce this di�culty, a novel algorithm

is proposed here. This algorithm is based on a wavefront approach and sweeps through cache only twice.

Key words. cache locality, compact scheme, wavefront algorithm, banded linear systems

Subject classi�cation. Computer Science, Applied and Numerical Mathematics

1. Introduction. Compact numerical schemes are widely used for challenging problems of computa-

tional physics [1]. Compact �nite di�erence formulas are de�ned as expressions where derivatives at di�erent

mesh points appear simultaneously. These schemes mimic spectral schemes with low dissipation and disper-

sion.

In spite of the fact that the number of arithmetic operations per grid node is approximately equal for

explicit and compact formulations of the same approximation order [2], the computational time is consider-

ably larger for the compact schemes. Tam and Webb ([3], p. 278) reported about the order of magnitude

computational time di�erence between explicit and compact formulations. The poor performance of compact

schemes is explained by architectural features of modern computers.

The gap between formal CPU performance and actual performance is likely to increase because the

CPU speed tends to increase much faster than the speed of memory access. To increase the computational

e�ciency of modern computers, the interface between a processor and its memory includes a number of

cache memories that are placed (logically) between the processor and the physical main memory, giving the

processor fast access to data stored in the cache [4]. Access to main memory typically requires dozens or

hundreds of 
ops, and reduction of the main memory-cache exchange represents a challenge for scienti�c

computing.

Compact schemes require solution of banded linear systems, which consider each spatial partial derivative

separately. Solution of banded linear systems by Gaussian elimination requires forward and backward sweeps

through data. These sweeps are repeated in all three spatial directions followed by a Runge-Kutta temporal

update (RK) and computing the right-hand sides of compact formulations. Thus, compact 3-D solvers pass

data through the memory cache eight times. On the contrary, an explicit central-di�erence algorithm may

be easily written in such a way that data passes through the cache only once.

This study proposes a new formulation of a compact-scheme based numerical algorithm which sweeps

through data only twice per stage of RK. The algorithm is based on a wavefront approach, where a current

front nodes are computed using only the values at previous fronts. Then this algorithm is expanded to any

number of levels of cache memory. Numerical solution at each time step is exactly the same as for a standard

compact algorithm.

�Sta� Scientist, ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 (e-mail: aeralpo@icase.edu). This

research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA 23681-2199

1



2. High-order Numerical Methods. Consider a multi-dimensional partial di�erential equation (PDE):

dU

dt
= Sx

@U

@x
+ Sy

@U

@y
+ Sz

@U

@z
(1)

where t is the time, k = 1; 2; 3 are spatial coordinates. The right-hand side terms are approximated using

compact �nite di�erence schemes [1]:

�U
0

i�2 + �U
0

i�1 + U
0

i + �U
0

i+1 + �U
0

i+2 =
a

2�x
(Ui+1 � Ui�1) +

b

2�x
(Ui+2 � Ui�2);(2)

where �x is the grid step and primes denote derivatives with respect to x: Expansion to systems with second

spatial derivatives (Navier-Stokes type) is straight-forward as the compact formulation for derivatives and

the method of their computation are similar to those for the �rst derivatives.

Equation (1) is discretized in time with an explicit Runge-Kutta scheme. The solution is advanced from

time level n to time level n+ 1 in several sub-stages [6]

HM = Sx
@UM

@x
+ Sy

@UM

@y
+ Sz

@UM

@z
+ aMHM�1;(3)

UM+1 = UM + bM+1�tHM ;

where M is the particular stage number; and the coe�cients aM and bM depend upon the order of the RK

scheme.

To compute spatial derivatives, we solve the sets of independent linear banded systems of equations

where each system corresponds to one line of the numerical grid. For example, a system corresponding to a

line in the x direction has a scalar tridiagonal matrix Nx �Nx :

ak;lZk�1;l + bk;lZk;l + ck;lZk+1;l = fk;l;(4)

where k = 1; :::; Nx; l = 1; :::; Ny � Nz; ak;l; bk;l and ck;l are the coe�cients, Zk;l are the unknown

variables, and Nx; Ny and Nz are the number of grid nodes in the x; y and z directions, respectively.

The �rst step of the Thomas algorithm is LU factorization

d1;l = b1;l; dk;l = bk;l � ak;l
ck�1;l

dk�1;l
; k = 2; :::; Nx;(5)

and forward substitution (FS)

g1;l =
f1;l

d1;l
; gk;l =

�ak;lgk�1;l + fk;l

dk;l
; k = 2; :::; Nx:(6)

The second step of the Thomas algorithm is backward substitution (BS)

ZNx;l = gNx;l; Zk;l = gk;l � Zk+1;l

ck;l

dk;l
; k = Nx � 1; :::; 1:(7)

The coe�cients ak; bk and ck are constant for compact schemes; therefore, LU factorization is performed

only once and the �rst step computations include only forward substitution (6).

The standard algorithm for compact numerical solution of the system (1) is performed as follows:

Algorithm A

Step 1. Compute the right-hand side of equation (2) using values of the governing variable U from the

previous time step.

Step 2. Compute the spatial derivatives solving tridiagonal systems in all spatial directions.

2



Step 3. Compute the right-hand side of equation (1) using the spatial derivatives computed in Step 2 and

update governing variables by Runge-Kutta scheme.

Step 4. Repeat computational Steps 1-3 for all Q stages of Runge-Kutta scheme.

Step 5. Repeat computational Steps 1-4 for all time steps.

This algorithm passes data through the cache to perform Step 1, then it passes data through the cache

twice per direction to compute the spatial derivatives (Step 2), and �nally the algorithm touches each grid

point to compute the temporal update (Step 3). Therefore, the data pass through the cache 2 + 2D times,

where D is the number of directions.

For explicit schemes, coe�cients � and � are equal to zero; therefore, Step 2 in the above algorithm is

reduced to local computations of spatial derivatives. Hence, explicit algorithms can be easily written in such

a way that the data passes through the cache once.

3. Proposed Cache-friendly Algorithm. In this section we develop a cache-aware compact numer-

ical algorithm where the data passes through the cache only twice.

Let us consider �rst the two-dimensional case. The wavefronts are de�ned as subsets of grid nodes (I; J)

with I + J = const within a wavefront. If a grid node (I; J) belongs to the front W , its neighbors (I � 1; J)

and (I; J � 1) belong to the previous front WM and two other neighbors (I; J +1) and (I +1; J) belong to

the next front WP:

The following Algorithm B sweeps through grid nodes only twice and performs exactly the same com-

putations as Algorithm A (see the previous section).

Algorithm B

for iwf=IF,...,IL

f

for ign=1,...,IG(iwf)

f

Compute the right-hand side of equation (2)

Compute the forward step of the Thomas algorithm (6) in the x and y directions.

g

g

for iwf=IL,...,IF

f

for ign=1,...,IG(iwf)

f

Perform the backward step of the Thomas algorithm (7) in the x and y directions.

Compute the Runge-Kutta temporal update.

g

g

Here, IF and IL are the �rst and the last wavefronts; indexed variable IG de�nes the number of grid-

nodes within a wavefront iwf: The forward-step computations (6) in both spatial directions use already

computed forward-step coe�cients in grid nodes (I�1; J) and (I; J�1); whereas the backward-step compu-

tations (7) use already computed values in grid nodes (I+1; J) and (I; J +1) (see Figure 1). This algorithm

exploits the data-independence of the solution of banded linear systems in di�erent spatial directions, i.e., the

systems in the x and y directions are solved simultaneously. Additionally, the right-hand sides of compact

3



Table 1

Number of data passes through cache for basic compact scheme (Algorithm A), wavefront compact scheme (Algorithm B)

and explicit scheme.

Number of data passes through cache

Dimension Algorithm A Explicit Algorithm B

2-D 6 1 2

3-D 8 1 2

formulations are computed simultaneously with the forward-step computations and the RK computations

are performed immediately after completion of the backward-step computations for a grid node.

This algorithm can be easily expanded to penta-diagonal matrices where two neighboring fronts from

either side are used in computations.

This algorithm is expanded to the three-dimensional case where wavefronts represent planes of grid

nodes (I; J;K) with I+J+K = const: Similar to the 2-D case, three previous neighbors belong to the plane

WM (see Figure 2) and the next three neighbors belong to the plane WP: Still, the algorithm sweeps twice

through the 3-D array (see Table 1).

4. Extension to Multi-level Cache. Let us �rst consider two cache levels, primary level L1 and

secondary level L2: We cover the computational domain with boxes (squares in the 2-D case) that �t the

cache size L1; and renumber the boxes as super-nodes (Ib; Jb;Kb): Then, we de�ne box wavefronts as subsets

of boxes where Ib + Jb +Kb = const: Each box is considered as a computational domain where the forward

and the backward steps of Algorithm B are applied. A computational domain covered with nine cache boxes

is shown in Figure 3. These boxes form �ve wavefronts in the forward and backward directions. The �rst

box wavefront includes the box (1; 1); the second box wavefront includes boxes (2; 1) and (1; 2) and so on.

The computed wavefronts within each box are shown for the �rst two box wavefront levels in the forward

and backward directions. Let us de�ne the two-level algorithm as follows:

Algorithm C

for ibf=IBF,...,IBL

f

for iwf=IF(ibf),...,IL(ibf)

f

Perform forward-step computations of algorithm B

g

g

for ibf=IBL,...,IBF

f

for iwf=IL(ibf),...,IF(ibf)

f

Perform backward-step computations of algorithm B

g

g

Algorithm C is consistent, i.e., the previous wavefront is completed by the time forward- or backward-

step computations begin for the current wavefront. Algorithm C requires a di�erent way of storage of

4



governing array U than the traditional way of column-by-column placement of array in memory. Instead,

here the array should be stored box-by-box.

This algorithm is easily expanded to cases with any number of cache levels. A cache box is covered with

smaller boxes of the size of the next (smaller) level of cache. In this case the number of nested loops is equal

to the number of cache levels. The inner loop sweeps through grid nodes that belong to a wavefront, whereas

outer loops sweep through box wavefronts corresponding to di�erent levels of cache.

5. Conclusion. The cache-aware compact numerical algorithm has been developed. The data pass

through cache only twice for 2-D and 3-D cases. The algorithm is expanded to any number of cache levels.

Interaction of the proposed algorithm with compilers will be studied in our future research.

REFERENCES

[1] S. K. Lele, Compact Finite Di�erence Schemes with Spectral Like Resolution, Journal of Computa-

tional Physics, 103 (1992), pp. 16-42.

[2] T. Colonius, Lectures on Computational Aeroacoustics, presented at the lecture series on

Aeroacoustics and Active Noise Control, von Karman Institute of Fluid Dynamics, 1997,

http://green.caltech.edu/~colonius.

[3] C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving Finite Di�erence Schemes for Com-

putational Acoustics, Journal of Computational Physics, 107 (1993), pp. 262-281.

[4] R. Y. Kain, Advanced Computer Architecture (A System Design Approach), Prentice-Hall, Inc., 1996.

[5] Tien-Pao Shih, Goal-directed Performance Tuning for Scienti�c Applications, Ph.D. Thesis, University

of Michigan, 1996.

[6] R. V. Wilson, A. O. Demuren and M. Carpenter, High-order Compact Schemes for Numerical

Simulation of Incompressible Flows, ICASE Report No. 98-13, 1998.

5



(I, J+1)

(I+1,J)

(I,J-1)

(I-1,J)

WM W WP

(I,J)

Fig. 1. Wavefront algorithm in a 2-D case, where WM;W and WP are three consequent wavefronts. Solid arrows

represent forward-step computations and dashed arrows represent backward-step computations

(I-1,J,K)

(I,J-1,K)

(I,J,K)

y

(I,J,K-1)

Fig. 2. Wavefront algorithm in a 3-D case. Shaded plane is the previous wavefront.

6



(1,1) (2,1)
(3,1)

(1,2) (2,2) (3,2)

(1,3)
(2,3) (3,3)

Fig. 3. Domain partitioning for two-level cache.

7


